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Daytime migrants are known to orientate using the position of the sun, com-
pensating for its changing position throughout the day with a ‘time-
compensated sun compass’. This compass has been demonstrated in many
migratory species, with various degrees of accuracy for the actual movement
of the sun. Here, we present a model for differing levels of compensation for
the solar ephemeris that shows that a high degree of efficiency, in terms of
distance travelled, can be achieved without full time compensation. In our
model, compensating for the sun’s position had a diminishing return with
an accuracy of 80% leading to only a 2% reduction in distance travelled.
We compare various modes of time compensation—full, partial, time aver-
aged and step—revealing their directional efficiency in terms of distance
travelled under an autumn migration scenario. We find that the benefit of
time compensation varies with latitude, with time averaging performing
very well, especially at all high latitudes, but step compensation performing
better at very low latitudes. Importantly, even rudimentary adjustment can
dramatically increase the efficiency of migration, which suggests an easy
pathway for the independent evolution of time compensation.
1. Introduction
Diurnal animals can use the sun to orientate, and while many use it just
to detect changes in heading, others use it as a compass to provide absolute
direction [1]. The use of the sun as a compass is important for migrating
animals as they need to travel long distances in a specific direction, and it
likely forms the primary cue for many day flying migrants [2,3]. Using the
sun effectively at different times of day however requires compensating for
its shifting position, which is known as a ‘time-compensated sun compass’,
and has been identified in birds [2], in insects such as the monarch butterfly
(Danaus plexippus) [4], the neotropical butterflies Aphrissa statira and Phoebis
argante [5] and the marmalade, vagrant, pied and yellow-clubbed hoverflies
(Episyrphus balteatus, Eupeodes corollae, Scaeva pyrastri and Scaeva selenitica)
[3,6], and in Atlantic herring Clupea harengus [7].

To compensate for the changing position of the sun, migrants must have
an internal representation of the sun’s movement. Three factors affect the rate
of change of the sun’s azimuth: time of day, date and latitude, and the inter-
actions between these factors mean that converting azimuth into an exact
bearing is a complex operation that may not be strictly necessary for efficient
migration. To simplify this calculation, one suggested method, known as time
averaging, assumes the azimuth changes at a constant rate throughout the
day [5]. Seasonal variation can be accounted for by adjusting the rate of
compensation by the number of daylight hours, as observed in crustacean
sandhoppers [8]. An alternative method is the step function, where the sun is
assumed to be in the east in the morning, with an abrupt adjustment at
midday to the west, as shown in honeybees [9], although is unlikely to be
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used by migrating butterflies [10]. The sun compass may also
be only partially time-compensated, and this has been dis-
cussed in the literature by several authors [1,5,11]. Partial
compensation has been seen in several groups (sandhoppers
[12], honeybees [13] and pigeons [14–16]). For example,
desert ants underestimate the rate of movement of the sun’s
azimuth when it is high and overestimate this rate of move-
ment when it is low [17]. Here, we quantify migratory
efficiency, in terms of distance travelled, under varying
levels and mechanisms of time compensation.
rnal/rsbl
Biol.Lett.19:20230355
2. Methods
(a) Estimating the sun’s azimuth for separate locations
Sun azimuth data from September, a peak month for autumn
migration, were obtained for four known migration locations
of different latitudes through which a diverse range of bird
and insects migrate (the data year [2018] does not affect results).
The highest latitude was the Falsterbo peninsula, Sweden
(55.36° N, 12.81° E) [18–20], followed by the Pyrenean mountain
pass of Bujaruelo (42.70° N, 0.06° W) [21,22], the Maghreb,
Morocco (31.46° N, 7.83° W) [23–26], and lakes in Panama
(9.17° N, 79.85° W) [5,10]. The data were downloaded from
sunearthtools.com at 5 min intervals, so to estimate the sun’s
azimuth for the intermediate minutes, spline models were fitted
to daily azimuth data using the smooth.spline(…, all.knots=T)
and predict() functions from base R version 4.2.1.

(b) Full compensation
To simulate the efficiency of a time-compensated sun compass,
which only partially accounts for the changing solar ephemeris,
the sun azimuth data were used to simulate 100 levels of time
compensation ranging from 0% to 100%. The directional effi-
ciency of each compensation level was determined for every
daylight minute of the month of September 2018 and averaged
over the entire season.

The simulations are based on a southward migration, travel-
ling towards the sun, with the assumption that organisms
travelling in different directions also undergo menotaxis to
orientate to their desired direction. The null model of time com-
pensation is phototaxis, with the direction of travel being the
sun’s azimuth, with full compensation being a perfectly direct
flight. Partial levels of compensation arewhen intermediate adjust-
ments are made, with the compensation level referring to the
proportion of the adjustment made for full compensation. For
example, with an azimuth (αmin) of 145°, the full compensation
adjustment for the desired migration direction of 180° is +35°, so
a 60% level of compensation (c = 0.6) would correspond to an
adjustment of +21° and a heading of 166°.

directional efficiencyca min ¼ � cosðamin þ c(180� amin)Þ

(c) Time averaging
To simulate a time-averaging approach to sun compensation,
the directional efficiency of a wide range of azimuth adjustment
rates ranging from 0° to 40° per hour was calculated, with adjust-
ments made relative to the time of the solar noon. For example,
on a day when solar noon was at 13.56 (tzenith), using an angle
adjustment rate (s) of 15° per hour means that at 11.56 (tmin),
2 h before noon, the angle adjustment would be +30°. The
sun’s azimuth (αmin) of 145° would result in a flight vector
of 175°.

directional efficiencysa min ¼ �cos(amin þ s(tnoon � tmin))
(d) Step compensation
To simulate step compensation a single adjustment, (s), was
added or subtracted depending upon if the time (tmin)
was before or after the solar noon (tnoon).

directional efficiencysa min ðtmin , tnoonÞ ¼ � cos (amin þ s)

directional efficiencysa min ðtmin . tnoonÞ ¼ � cos (amin � s)
(e) Weighting
Migratory activity is not constant and can vary between taxa
from all day, to tailing off around sunrise and sunset, to concen-
trated at a particular daylight hours [21,27–29]. To show how
migratory efficiencies change in organisms where migration
peaks at midday, as seen in many insects and some birds
[27,28], we used radar data of hoverflies migrating in the UK
in September [29]. A spline fitted to this daily abundance data
(electronic supplementary material, figure S2) was consulted to
weight each minute (wmin) of the experimental period according
to the proportion of individuals migrating.

directional efficiency ¼
XNmin

min¼1

directional efficiencymin�
wminP
wNmin
3. Results
To model the effectiveness of imperfect versus perfect
time compensation, we conducted simulations of autumnal
southward migrations under six conditions: three time-
compensation strategies (full compensation, time averaging
and step compensation) under two differing weighting criteria
(by time of day and unweighted; a comparison of weighting
methods is made in electronic supplementary material,
figure S6). Flight directedness affected the directional efficiency
equally for all levels of compensation in proportion to the
degree of directedness and so was not considered further
(electronic supplementary material ‘Modelling inaccuracy’).
Simulated migration tracks and estimated sun azimuths are
shown in figure 1 while results are visualized in figure 2.

(a) Full compensation
The efficiency of phototaxis varied greatly between locations
from 17% to 54% of a perfectly direct flight; this increased
to 33% to 81% when weighted by time of day (figure 2a).
Both weighted and unweighted simulations converge to
100% at full compensation so the benefit of time compen-
sation was higher when unweighted for time of day. Full
time compensation showed diminishing returns, with 70%
time compensation, similar to the observed level in Massy
et al. [3], providing 90% of the increase in efficiency of
complete compensation (figure 2a and table 1).

(b) Time averaging
The directional efficiency of different adjustment rates of time
averaging followed a parabolic curve. The optimum adjust-
ment rate decreased, and the peak efficiency increased
with latitude (table 2 and figure 2). Weighted simulations
had higher optimum adjustment rates, reflecting that weight-
ing favours the middle of the day when the sun’s azimuth
moves more quickly. Similarly, using the Puerto de Bujaruelo
as an example, the optimum adjustment rate reduced through-
out the month of September from 20.4 ±0.1° h

−1 to 17.8 ±0.1° h
−1,
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Figure 1. (a) Virtual flight paths of different migration strategies generated from sun position data from the Puerto de Bujaruelo 1–5 September. From left to right:
none (white)—phototaxis shows the flight path when orientated towards the sun. Full compensation (green)—compensation relative to the sun’s azimuth, with
‘compensation level’ referring to the degree of compensation. Time averaging (yellow)—adjusting at a constant rate throughout the day. Step compensation
( purple)—a single large direction adjustment at midday. (b) Real and estimated sun azimuths based upon different compensation strategies at the Puerto de
Bujaruelo (left) and Panama (right). From top to bottom: full, time averaging, step. Red lines: real sun azimuths; dark blue lines: 100% of the optimum
level of compensation; light blue: 70%; grey: no compensation/phototaxis.
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reflecting the sun’s azimuth movement rate slowing from a
mean of 15.5° h−1 to 14.7° h−1 (see electronic supplementary
material, figure S6). Using the optimum adjustment rate for
each day further increased the potential efficiency from
0.9969 to 0.9974 for weighted simulations and from 0.9938 to
0.9941 for unweighted simulations.
(c) Step compensation
Step compensation followed a similar pattern to time aver-
aging, maintaining relatively high peak efficiencies of 95%
and 92% for weighted and unweighted simulations at
the Puerto de Bujaruelo. The optimum step size fell more
dramatically throughout September from 99° to 79° for



Table 1. Varying levels of time compensation with extrapolated distances travelled in kilometres per day at 10 m s−1 (medium insect [6]) or 16 m s−1 (average
migratory bird [30]) for two locations, assuming 4 h of flight. Bracketed values are weighted by time of day.

level of time
compensation

Puerto de Bujaruelo (42.70° N) Lake Gatun, Panama (9.17° N)

directional flight
efficiency

km per day at
10 m s−1

km per day at
16 m s−1

directional flight
efficiency

km per day at
10 m s−1

km per day at
16 m s−1

PHOTOTAXIS 0.503 (0.768) 72 (111) 116 (177) 0.174 (0.332) 25 (48) 40 (76)

0.2 0.664 (0.847) 96 (122) 153 (195) 0.434 (0.546) 62 (79) 100 (126)

0.4 0.803 (0.912) 116 (131) 185 (210) 0.664 (0.733) 96 (106) 153 (169)

0.6 0.910 (0.960) 131 (138) 210 (221) 0.845 (0.877) 122 (126) 195 (202)

0.8 0.977 (0.990) 141 (143) 225 (228) 0.960 (0.969) 138 (139) 221 (223)

FULL 1 (1) 144 (144) 230 (230) 1 (1) 144 (144) 230 (230)

Table 2. The optimum levels of different time-compensation strategies at varying geographical locations. Peak efficiencies are relative to a perfectly direct flight.
Bracketed values are weighted by time of day.

Falsterbo, Sweden
Puerto de Bujaruelo,
France Maghreb, Morocco Neotropical, Panama

latitude 55.36° 42.70° 31.46° 9.17°

phototaxis efficiency 0.537 (0.812) 0.503 (0.768) 0.442 (0.701) 0.174 (0.332)

full compensation: increase over phototaxis 86% (23%) 99% (30%) 126% (43%) 475% (201%)

time averaging: optimum hourly adjustment 16.1° (17.1°) 17.0° (19.0°) 18.1° (21.5°) 21.3° (30.0°)

time averaging: peak efficiency 0.998 (0.999) 0.994 (0.997) 0.983 (0.990) 0.867 (0.857)

time averaging: increase over phototaxis 86% (23%) 98% (30%) 122% (41%) 398% (158%)

step compensation: optimum adjustment 105° (60°) 112° (68°) 121° (81°) 159° (138°)

step compensation: peak efficiency 0.886 (0.937) 0.893 (0.929) 0.902 (0.920) 0.952 (0.928)

step compensation: increase over phototaxis 65% (15%) 78% (21%) 104% (31%) 447% (180%)
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unweighted simulations. In contrast to time averaging, the
benefit of step compensation was higher at low latitudes
due to closely matching the sun’s azimuth, with a higher
directional efficiency than time averaging in Panama
(9.2° N) (figure 1 and table 2).
4. Discussion
Our results show that time compensation vastly increases
the efficiency of sun-compass-based migration. Due to the
parabolic curve of the efficiency of all time compensation
strategies, modest levels of time compensation provide most
of the benefit. When simulating a southward migration
during the month of September, we found only a 5% loss in
efficiency between complete time compensation and a partial
time compensation of 70% (as seen in Scaeva spp. hoverflies
[3] and in neotropical butterflies [5,31]).

The sun’s azimuth follows a sigmoidal curvewith respect to
time, which time averaging simplifies by linearization [5,11]. At
temperate latitudes even this linear adjustment resulted in
barely any loss of directional efficiency compared to full com-
pensation. The predicted azimuth of step compensation
deviated from the sun’s azimuth more than time averaging,
resulting in lower efficiency, although the deviation was only
sufficient at certain times of day—dawn, midday and dusk—
to produce a palpable decrease. The pattern reversed at low
latitudes where step compensation performed better than
time averaging because the z-shape of the predicted azimuth
of step compensation more closely resembled the path of
the sun’s azimuth than the straight line of time averaging.
The (co)sinusoidal relationship between vector and directional
efficiency means that small deviations from the intended direc-
tion have aminiscule impact. The opposite is true for horizontal
drift, so it is likely that goal-orientated migrants like monarch
butterflies require more directional accuracy to reach their
destination (reflected in high directedness in simulation exper-
iments [4,32]). Since drift produced by time compensation is
symmetrical throughout the day, this is unlikely to influence
the choice of time-compensation strategy, however.

Latitude greatly influenced the efficiency of migration
only by phototaxis, which was higher in northerly latitudes
where the sun’s path was more southerly. The potential
benefit of time compensation correspondingly ranges from
doubling the efficiency of migration in Sweden, to a sixfold
increase in Panama. The increased benefit close to the equator
is balanced by increased complexity as the sun’s azimuth
moves further, faster and with differing speed and is further
exacerbated by high solar elevations reducing orientational
efficiency, as shown in dung beetles [33]. The simple step
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function fit the path of the sun very well, but butterflies
migrating through Panama appear not to use it [10], perhaps
because an effective strategy also needs flexibility to work in
other latitudes and times of year. While time averaging per-
formed poorly here compared to more northerly latitudes,
it still represented a fivefold increase in efficiency that was
only marginally improved upon by the sixfold increase of
full compensation. Ultimately the compensation strategy
does not have to be linear, and even adjusting for the speed
of the sun in a rudimentary way, as shown in desert ants
[17], would provide a benefit almost indistinguishable from
full compensation.

To estimate distance travelled we use the examples of
migratory hoverflies and moths in western Europe, which
had autumn displacement speeds of around 10–13 m s−1

recorded by radar [6]. At 10 m s−1, a hypothetical migration
of 1500 km from southern England to the south of Spain of
would take 14 days if using only phototaxis and optimizing
4 h of flight around the middle of the day (i.e. weighted).
Time-compensating for sun position at a level of 70%
would reduce this to 11 days representing an advantage
that time compensating fully would barely improve upon.
The directional efficiency of autumnal migration is likely to
be under strong selection as it occurs during a period of dete-
riorating weather conditions when the cost of failure is high.
Intermittently suitable weather conditions might mandate
migrating whenever it is favourable, including the mornings
and evenings when compensation is more valuable as the sun
is in a less southerly position. In this case (migrating equally
all day: unweighted), 70% compensation still allows
this migration to be undertaken in 11 days, whereas via
phototaxis it would take 21 days.

The sun is the most reliable directional cue, which with
menotaxis allows many animals to travel in their desired
direction [34]. Time compensation vastly increases the effi-
cacy of sun-based navigation, with even rudimentary
compensation methods providing sizable increases to the effi-
ciency of travel and is therefore likely to be under strong
selection. In addition, a wide variety of organisms, from
birds to insects to mammals, use a time-compensated sun
compass to orientate suggesting that it has independently
evolved on many occasions. The manner in which the sun
is used differs: while many organisms appear to use the
sun as their primary cue during long-distance movements,
there may be significant variation in how it is integrated
with other senses such as wind, olfaction, the magnetic
compass or the use of landmarks [35–39]. With such diverse
senses, neural architecture and life histories, and the fact that
the optimal strategies are dependent on location, it is likely
that sun azimuth change has been approximated in different
ways and to different extents. While individual requirements,
such as goal-oriented migration, might mandate more accu-
racy, this study shows that it is possible to efficiently
navigate with approximations of sun position and partial
levels of compensation.
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